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Pulse irradiation of low-power laser stimulates bone nodule
formation

Yuji Ueda® and Noriyoshi Shimizu'

YDepartment of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba 271-8587
"Department of Orthodontics, Nihon University School of Dentistry, Tokyo 101-8310

(Received 10 November 2000 and accepted 14 February 2001)

Abstract: Although low-power laser irradiation
provides many anabolic effects such as acceleration of
bone formation, the effects of different pulse frequencies
used during laser irradiation on bone formation have
not been elucidated. Osteoblastic cells isolated from fetal
rat calvariae were irradiated once with a low-power Ga-
Al-As laser (830 nm, 500 mW) in two different
irradiation modes; continuous irradiation (CI), and 1
Hz pulsed irradiation (PI). We then investigated the
effects on cellular proliferation, bone nodule formation,
alkaline phosphatase (ALP) activity, and ALP gene
expression. Laser irradiation in both groups
significantly stimulated cellular proliferation, bone
nodule formation, ALP activity, and ALP gene
expression, as compared with the nonirradiation group.
Notably, PI markedly stimulated these factors, when
compared with the CI group. Since 1 Hz pulsed laser
irradiation significantly stimulates bone formation in
vitro, it is most likely that pulse frequency is an
important factor affecting biological responses in bone
formation. (J. Oral Sci. 43, 55 - 60, 2001)

Key words: pulse frequency; low-power laser; bone
nodule formation; osteoblasts; alkaline
phosphatase.
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Introduction

Recently, various photo-biostimuratory effects of low-
power laser irradiation on regeneration have been reported
in skin (1), nerve (2) and skeletal muscle tissues (3,4). In
particular, the acceleration of bone regeneration by laser
treatment has been a focus of recent research (5-10). Since
induction of bone regeneration is always accompanied by
tooth and/or jaw movement with orthodontic treatment,
tooth extraction, orthognathic surgery, bone fracture, and
stimulation of bone regeneration by laser treatment may
be of great potential benefit to shorten the treatment period.

Low-power laser irradiation has also been shown to
modulate various biological responses which are affected
by some factors involved with the mode of laser irradiation
such as total energy dose, laser spectrum, power density,
and trradiation phase. In order to apply laser therapy to
clinical use, the properties and biological effects of laser
irradiation should be precisely elucidated, and more
effective irradiation modes and easier laser application
methods should be developed. However biological effects
of different pulse frequency are not well known. In the
present study, we examined continuous wave and 1 Hz pulse
irradiation of low-power laser on bone nodule formation
using a rat calvarial osteoblastic cell culture system.

Materials and Methods

Cell isolation and culture procedures
The calvaria were dissected aseptically from 21-day-
old fetuses of timed pregnant Wistar rats. The calvaria were
minced and sequentially digested in a 0.3 % collagenase
mixture (Wako, Osaka, Japan). Five populations were
obtained after digestion times of 10, 20, 30, 50, and 70 min.
Cells retrieved from the last four steps of the five-step
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digestion sequence were pooled and plated in T-75 tissue
culture flasks (Falcon 3110, Franklin, NJ) in minimal
essential medium (o-MEM; Gibco, Grand Island, NY)
containing 15 % fetal calf serum, and antibiotics comprising
100 png/ml penicillin G (Sigma Chemical Co., St. Louis,
MO), 50 pg/ml gentamicin sulfate (Sigma), and 0.3 pg/ml
fungisone (Flow Laboratories, McLean, VA), supplemented
with 50 ug/ml ascorbic acid (Wako) and 10 mM Na f3-
glycerol-phosphate (B-GP, Wako) (11,12). The cultures
were maintained in a humidified atmosphere consisting of
95 % air and 5 % CO, at 37 °C. After 24 h of incubation,
attached cells were washed with phosphate-buffered saline
(PBS)to the remove nonviable cells and debris, trypsinized
with 0.05 % trypsin (Gibco) inPBS.

The cells were then resuspended in the culture medium
described above and plated into 35-mm tissue culture
dishes (Falcon) at a density of 5 x 10* cells/dish (5.2 x 10°
cells/cm?), in a 24-well culture plate (Falcon) at a density
of 1 x 10* cells/well (4 x 102 cells/cm?), as well as 100-
mm tissue culture dishes (Falcon) at a density of 4 x 10°
cells/dish (5.1 x 10° cells/cm?). Medium was changed
every 3 days and cultures were maintained from 2 to 21
days.

Procedure of laser irradiation

A low-energy Ga-Al-As diode laser apparatus (model
Panalas-1000, Matsushita, Inc., Osaka, Japan) with a
wavelength of 830 nm (maximum power put out of 500
mW) was used in this study. The laser beam was delivered
by an optical fiber 0.6-mm in diameter that was deforcused
at the tip by a concave lense and was irradiated uniformly
in a circular area, 100 mm in diameter, when the power
density of laser beam was measured by a laser power
meter at the cell-layer level. Irradiation was performed at
550 mm above the cell layer (13). We used two different
types of irradiation; which were continuous irradiation (CI)
and 1 Hz pulsed irradiation (PI). Exposure and rest time
was the same for pulsed irradiation. The total energy
corresponding to ClI exposures of 1.25 to 10 min was
0.48~3.84 J/cm?, while the exposure times in the
corresponding pulsed irradiation group were two-fold
longer (2.5-20 min), though the same total energy was used.

Laser irradiation was carried out after subculture (day
1) on a clean bench. The cells were then maintained in a
CO, incubator for up to 21 days after subculture without
any subsequent treatment. Control dishes and plates were
placed on a clean bench for corresponding periods without
any irradiation,

Determination of cell number
Growing cells in the 24-well culture plates were collected

by digestion with a 1:1 mixture of trypsin (0.05 %) and
collagenase (0.1 %) solutions for up to 25 min at the room
temperature to release the cells from the collagenous
matrix. The number of cells in each well was determined
with a Coulter Counter (Model ZM, Electronics Lid.,
Northwell drive, Luton, Beds England).

Quantification of bone nodules

Primary rat calvarial cell cultures were maintained for
21 days after subcultivation, after which the contents of
each well were fixed for 10 min in 4 % paraformaldehyde
in PBS and stained using the von Kossa technique. Bone
nodules in each 35 mm dish were counted at 15 x
magnification using a dissecting microscope (Olympus,
Tokyo, Japan).

To evaluate the bone nodule areas precisely, the 35-mm
dishes were photographed at 15 X magnification. The
outline of each bone nodule was traced from the
photographs and the traces were measured by a personal
computer using image analysis software (Ultimage Ver.
2.0, Graftek France, Voisins-Le-Bretonneux, France). The
total bone nodule area was calculated by adding each area
in each dish and then the mean + S.D. -was calculated
from 3 replicate data.

Assay of alkaline phosphatase (ALP) activity

Calvarial cells cultured in the 24-well plates were rinsed
three times with PBS,. Tris-HCI (10 mM, pH 7.4)
containing 5 mM MgCl, was then added, and the cells were
collected by a cell scraper and sonicated for 1 min. ALP
activity was assayed on days 3 to 21 by the method
described by Lowry et al. (14). The amount of p-nitrophenol
produced was measured at 410 nm. One unit of enzyme
was defined as the activity which liberated 1 mmole of
product per min at 37°C, and ALP activity was shown as
mU/10° cells.

RNA preparation and RT-PCR analysis

Total RNA was extracted on day 9 from rat osteoblastic
cells by an acid guanidium thocyanate-phenol-chloroforum
extraction method (15). cDNA synthesis and amplification
by RT-PCR were carried out using a GeneAmp RNA kit
(Perkin-Elmer-Cetus, NJ). PCR amplification was carried
out using the GeneAmp PCR system 9600 (Perkin-Elmer-
Cetus) for 30 cycles under the following conditions: 94
°C for 1 min, 55 °C for 2 min, and 72 °C for 3 min. The
PCR primers for amplification of ALP (16) and GAPDH
(17) were designed based on the published sequences.
PCR fragments were electrophoresed on 2.0 % agarose gels
and subsequently stained with ethidium bromide.



Statistics

The values were calculated as mean values + standard
deviation (S.D.). Significance was determined by Student's
test, Tukey test, and one-way analysis of variance
(ANOVA).

Results

Laser irradiation effect on cellular proliferation

The growth curve for fetal rat calvarial cells cultured
under the preceding conditions is shown in Table 1. Laser
irradiation under both conditions significantly stimulated
cellular proliferation as compared with the controls.
However, Proliferation in Plwas significantly stimulated
ondays 6 (P <0.05),9 (P <0.01),and 12 (P < 0.05), when

Table | Effects of low frequency laser irradiation on cellilar
proliferation. Laser irradiation at both conditions
significantly stimulated cellular proliferation as

while PI showed grater cellular proliferation on days
9 than CI(*P < 0.05). Values are mean + S.D. for 3

cultures.
x10?
i‘redu\lmnmmc @ 3 6 9 12 15 18 21
mode
Comt Lo 119104 [40.0£ 1.4 [44.921.4 [53.526.7|57.121.9[439+22[41.321.0
- -
Cl 1.0 1334204 [47.2£1.9 [54.32 1.9 557 1.7|55.8£1.7|41.21.9[429% 1.8
0 =71 -
Pl 1.0 140104 [47811.963.1£1.9[62.0£2.0|56.9£2.1|40.8+2.3[43.2+22
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Fig. 1 Effect of laser irradiation on the number of bone
nodules on day 21. Laser irradiation at both conditions
significantly stimulated the number of done nodules
as compared with the control, and the effects increased
in a dose dependents manner. Values are mean  S.D.
fore 4 cultures. :Significant difference from
nonirradiation control (P < 0.01). *: Significant
difference from corresponding CI (P < 0.05 by tukey
test). Similar results were obtained from three different
experiments.
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compared with the corresponding controls, and the number
of cells in PI was significantly higher (P < 0.01) on days
9 (1.20-fold), when compared with the corresponding CI.

Laser irradiation on bone nodule formation
The number of bone nodules present in 3 replicate 35-
mm dishes was counted and significant stimulation by laser
irradiation occurred under both conditions, however, the
stimulatory effects were dose dependent in each groups
(one-way ANOVA, P < 0.01) (Fig. 1). The maximal
stimulation rates were 1.2-fold in CI (10 min), 1.3-fold in

%)

20 *

Total area of nodules per dish (mm

i

Cont ClI PI

Laser irradiation modes

.2 Comparison of different laser irradiation modes on

total area of bone nodules. Laser irradiation at both

conditions significantly stimulated the total area, as

compared with the control. Values are mean = S.D.

for 3 cultures.*:Significant difference from
nonirradiation control (P < 0.01).
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Stimulatory effects of laser irradiation on ALP activity
in rat calvarial cells.Laser irradiation at both conditions
sigmiicantly stimulated ALP Activity on days 912
andl15, as compared with the control (**P < 0.01, *P
< 0.05),ands PI had greater increase in ALP activity
than corresponding CI (7'/P < 0.01,7P < 0.05). Values
are mean = S.D. for 3 cultures.
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Fig. 4 Stimulatory effects of laser irradiation on ALP mRNA
level in rat calvarial cells. Ethidium bromide staining
patterns of simultaneously amplified PCR probucts
on agarose-gel electrophoresis are shown. The gene
expression of ALP on day 9 was markedly increased
by laser irradiation as compared with the control.
Results represent those from three similar experments.

PI (20 min ), as compared with the controls (P < 0.01).

When the effects of dose on bone nodule formation
were compared, the lowest dose (0.48 J/cm?) did not have
any stimulatory effect in the PI, while the higher doses
(0.96~3.84 J/cm?) showed stimulatory effects. In the CI,
only the two highest doses (2.88 and 3.84 J/cm?) showed
stimulatory effects. Since the number of bone nodules
was dependent on the dose, the stimulatory effects of bone
nodule formation in each group were compared at the
same dose of irradiation. The PI had significant bone
nodule stimulation, as compared with the Cl at 1.92 to 3.84
Jjem? (1.07~1.15-fold ; P < 0.05)(Fig. 1). When the total
bone nodule areas were compared, they were found to be
significantly stimulated in both irradiation groups, as
compared with the controls (CI : 1.7-fold, PI : 1.9-fold,
c0.01) (Fig. 2).

Effect of laser irradiation on ALP activity

We next determined ALP activity, the marker of
osteoblast differentiation, in the cultures. ALP activity in
the controls, CI, and PI increased late in the culture, with
peak expression seen at 18 days in the controls, at 15 days
in Cl and at 12 days in PI-1 (Fig. 3). Laser irradiation on
day 1 significantly stimulated ALP activity on days 9, 12,
and 15 (P <0.01) in the PI, with a maximal increase of
1.8-fold occwrring on day 12. Significant activity was also
seen on days 12 and 15 (P <0.05) in the CI, with the
maximal increase being 1.2-fold on day 15, as compared
with the controls. Moreover, PI had significantly increased

ALP activity as compared with the Cl on day 12 (1.4-fold
P <0.01), and on day 15 (I.1-fold ; P <0.05).

Effect of laser irradiation on ALP gene expression

To elucidate the mechanisms for the alteration of ALP
activity by laser irradiation, ALP mRNA levels in both the
control and laser irradiation groups were examined by
RT-PCR analysis. As shown in Fig. 4, the visualized PCR
products corresponding to GAPDH were the same in the
three samples (control, CI, PI), therefore, it seemed that
the amount of PCR products reflected ALPmRNA Jevel.
The bands of the laser irradiated cells were more intense
than those from the control. Furthermore, the band for ALP
mRNA from the PI was more intense than CI.

Discussion

Using arat calvarial osteoblastic cell culture system, we
clearly demonstrated that low frequency (1Hz) pulsed
laser irradiation (PI) significantly stimulated cellular
proliferation (1.2-fold), ALP activity (1.4-fold), and bone
nodule formation (number, 1.15-fold), as compared with
continuous laser irradiation (CI) at the same total energy
dose. Although laser irradiation in both conditions used
in this study significantly stimulated bone formation in vitro,
bone formation capacity was much higher in the PI than
in the CL In the CI, the number of bone nodules was
increased with only the two highest doses, while in the PI,
the lower dose stimulated the number of bone nodules.
These results showed that the mode of irradiation used in
the PI was effective for bone nodule formation.

Various biostimulatory effects of low-energy laser
irradiation have been reported such as cell proliferation (18),
defferentiation (13), collagen synthesis (19), and the release
of growth factors (20,21) from cells. These effects are
affected by many factors including total energy dose, laser
spectrum, power density, and irradiation phase. However,
there are no knowledge concerning the effects of laser
irradiation pulse frequency on bone formation.

Sanders et al. (22) reported that irradiation with shorter
pulse duration in CO, laser incisions minimized wound-
healing delays more effectively than continuous irradiation.
Miyamoto et al. (23) also reported that the cytotoxicity ratio
of HeLa cells irradiated by pulsed laser (10 Hz) was lower
than that by continuous wave laser in photodynamic
therapy. However the type of cell death differed between
pulsed (apoptosis) and continuous wave (necrosis)
irradiation, as greater amount of the sensitizer entered the
cells during pulsed irradiation than continuous wave
irradiation, causing a different type of DNA damage.
Although these studies may not be directly comparable with
our present results, because of different experimental



designs, it is most likely that pulse frequency influences
biological responses. Since laser light is electromagnetic
rradiation that provides physical stimulus, the biological
¢effects of irradiation may be comparable with those of
tlectromagnetic fields, which are known to modify some
ielevant physiological parameters of cell cultures, such as
proliferation, protein synthesis, secretion of growth factors,
iranscription, and others (24). These biological responses
have also been shown to be influenced by the pulse
frequency of the electromagnetic field. There are some
studies that special pulse frequencies such as 10 or 100
Hz from an electromagnetic field increased cellular
proliferation (25, 26). In osteoblastic cells, Ochi (27)
reported that a 100 Hz pulse frequency was most effective
in stimulating the proliferation of mouse osteoblastic
MC3T3-EI cells, among tested frequencies between 50
and 200 Hz, and concluded that an effective electromagnetic
field pulse frequency for cellular proliferation may be
dependent on cell type, as cells seem to have their own
peculiar sensitivity for certain pulse frequencies. In our
experimental conditions, that used in the PI may be the
more optimal frequency for bone formation compared
with CI in rat calvarial cells.

Bone nodules found arising in cultures of osteoblastic
cells originated from nodule-forming immature precursors
that proliferated and differentiated to mature osteoblasts
over a period of 3 weeks in vitro (11,13). In the present
study, laser irradiation at both conditions would have
increased the induction of nodule forming commitment,
as compared with the control, and the conditions associated
with PI may have had more capacity to increase the
induction of nodule forming commitment than those with
CI. Since the total area of bone nodules may show bone
formation capacity, PI may be better for bone formation.

ALP activity is considered to be a marker of osteoblast
differentiation (28,29). In the present experiment, ALP
activity was significantly stimulated on days 12 and 15 after
laser irradiation, in CI (Fig. 3). In PI it was dramatically
stimulated on days 12, which was significant when
compared with CI. Furthermore, an increase in ALP
activity could involve transcriptional events of the bone
type ALP gene, while dramatic increases in the activity
may reflect stimulation of both differentiation and
proliferation of cells, resulting in a significant increase in
the number of differentiated cells that express differentiation
markers, and finally form more and larger bone nodules.

In conclusion, low frequency pulsed laser irradiation,
such as I Hz, significantly stimulated bone formation in
vitro, as compared with continuous irradiation. Although
the stimulatory capacity of laser irradiation is influenced
by factors such as total energy dose, laser spectrum, power
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density, and irradiation phase, the pulse frequency of low-
energy laser irradiation must also be considered as an
important factor for influencing biological response.

To definite better irradiation mode, further studies such
as effects of different pulse frequencies on bone formation
should be examined.
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Effects of Pulse Frequency of Low-Level Laser Therapy
(LLLT) on Bone Nodule Formation in Rat Calvarial Cells

YUJI UEDA! and NORIYOSHI SHIMIZU?

ABSTRACT

Objective: The purpose of this study was to determine the effect of pulse frequencies of low-level laser therapy
(LLLT) on bone nodule formation in rat calvarial cells in vitro. Background Data: Various photo-biostimula-
tory effects of LLLT, including bone formation, were affected by some irradiation factors such as total energy
dose, irradiation phase, laser spectrum, and power density. However, the effects of pulse frequencies used dur-
ing laser irradiation on bone formation have not been elucidated. Materials and Methods: Osteoblast-like cells
isolated from fetal rat calvariae were irradiated once with a low-energy Ga-Al-As laser (830 nm, 500 mW,
0.48-3.84 J/cm?) in four different irradiation modes: continuous irradiation (CI), and 1-, 2-, and 8-Hz pulsed
irradiation (PI-1, PI-2, PI-8). We then investigated the effects on cellular proliferation, bone nodule forma-
tion, alkaline phosphatase (ALP) activity, and ALP gene expression, Results: Laser irradiation in all four
groups significantly stimulated cellular proliferation, bone nodule formation, ALP activity, and ALP gene ex-
pression, as compared with the non-irradiation group. Notably, PI-1 and -2 irradiation markedly stimulated
these factors, when compared with the CI and PI-8 groups, and PI-2 irradiation was the best approach for
bone nodule formation in the present experimental conditions. Conclusion: Since low-frequency pulsed laser
irradiation significantly stimulates bone formation in vifro, it is most likely that the pulse frequency of LLLT

an important factor affecting biological responses in bone formation.

INTRODUCTION

RECENTLY, various photo-biostimulatory effects of low-en-
ergy laser irradiation on regeneration have been reported
in skin,!? nerve,? and skeletal muscle tissues.45 In particular,
the acceleration of bone regeneration by laser treatment has
been a focus of recent research.6-1° Since bone regeneration in-
duction is always accompanied by tooth movement with ortho-
dontic treatment, tooth extraction, orthognathic surgery, bone
fracture, and the like in the fields of dentistry and orthopedic
surgery, stimulation of bone regeneration by laser treatment
may be of great potential benefit to abbreviate the treatment
period.

Low-level laser therapy (LLLT) has also been shown to
modulate various processes in different biological systems!!
that involve cellular proliferation,!? differentiation,!3 collagen
synthesis,!* and the release of growth factors,!516 from cells.
Further, these biological responses are affected by the mode of

laser irradiation such as total energy dose, laser spectrum,
power density, and irradiation phase. We previously demon-
strated that LLLT at an earlier stage of bone formation was
more effective than irradiation at a later stage,!3!7 and that
stimulation of bone formation by LLLT was dependent on the
total energy dose.!"!8 Further stimulatory effects of bone for-
mation have been obtained by repeated irradiation with a
small-energy dose for a certain period rather than irradiation
once at the same total energy dose.!”.!8 In order to apply LLLT
to clinical use, the properties and biological effects of laser ir-
radiation should be precisely elucidated, and more effective
irradiation modes and easier laser application methods should
be developed.

Recently, Miyamoto et al.!® reported that 10-Hz frequency
pulsed laser irradiation induced apoptosis, while continuous
wave laser irradiation induced necrosis in photodynamic ther-
apy. Since biological responses differ between pulsed and con-
tinuous wave irradiation, we speculated whether the frequency

'Department of Orthodontics, Nihon University School of Dentistry at Matsudo Chiba, Japan.
Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.

271



272

used during laser irradiation affects bone formation capacity
and what mode of frequency most promotes bone formation. In
the present study, we examined the effects of irradiation pulse
frequencies of LLLT on bone nodule formation using a rat cal-
varial cell culture system.

MATERIALS AND METHODS

Cell isolation and culture procedure

The procedures of osteogenic cell isolation and culture
used in the present study have been described by Bellows
et al.2021 Briefly, calvariae were dissected aseptically from
21-day-old fetuses of timed pregnant Wistar rats, and the
adherent soft connective tissues were loosely removed. The
calvariae were minced and sequentially digested in a colla-
genase mixture. Five populations were obtained after diges-
tion times of 10, 20, 30, 50, and 70 min. Cells retrieved from
the last four steps of the five-step digestion sequence were
pooled and plated in T-75 tissue culture flasks (Falcon 3110,
Franklin, NJ) in minimal essential medium («-MEM; Gibco,
Grand Island, NY) containing 15% fetal calf serum, and an-
tibiotics, 100 pg/mL penicillin G (Sigma Chemical Co., St.
Louis, MO), 50 pg/mL gentamicin sulfate (Sigma), and 0.3
pg/mL fungisone (Flow Laboratories, McLean, VA), supple-
mented with 50 pg/mL ascorbic acid (Wako, Osaka, Japan)
and 10 mM Na B-glycerol-phosphate (B-GP, Wako). The
cultures were maintained in a humidified atmosphere con-
sisting of 95% air and 5% CO, at 37°C. After 24 h of incu-
bation, attached cells were trypsinized with 0.05% trypsin
(Gibco) in phosphate-buffered saline (PBS), and then counted
using a Coulter Counter (model ZM, Electronics Ltd., Luton,
Beds, U.K.).

The cells were then resuspended in the culture medium de-
scribed above and plated onto 35-mm tissue culture dishes (Fal-
con) at a density of 5 X 10¢ cells/dish (5.2 X 108 cells/cm?), ina
24-well culture plate (Falcon) at a density of 1 X 10¢ cells/well
(4 X 103 cells/cm?), as well as 100-mm tissue culture dishes
(Falcon) at a density of 4 X 105 cells/dish (5.1 X 102 cells/cm?).
Medium was changed every 3 days, and cultures were main-
tained from 3 to 21 days.

Procedure of laser irradiation

A low-energy Ga-Al-As diode laser apparatus (model
Panalas-1000, Matsushita, Inc., Osaka, Japan), which has a
wavelength of 830 nm (maximum power output of 500 mW),
was used in this study. The laser beam was delivered by an
optical fiber 0.6-mm in diameter that was de-focused at the

" tip by a concave lens to provide a uniform circle of irradia-
tion, 100 mm in diameter, at the cell-layer level. The power
density of the laser beam was measured by a laser power
meter. We used four different modes of irradiation: continu-
ous irradiation (CI) and 1-, 2-, and 8-Hz pulsed irradiation
(PI-1, PI-2, PI-8). Exposure and rest time was the same for
each pulsed irradiation (50% duty cycle). The total energy
corresponding to CI exposures of 1.25-10 minutes was
0.48-3.84 J/cm?, while the exposure times in the correspond-
ing pulsed irradiation groups were twofold longer (2.5-20
min), though the same total energy was used.

Ueda and Shimizu

The laser dose chosen was previously reported to stimulate a
number of bone nodules from rat calvarial cells using an exper-
imental model similar to the one in the present study.!® Laser
irradiation was carried out after subculture (day 1) on a clean
bench. The cells were then maintained in a CO, incubator for
up to 21 days after subculture without any subsequent treat-
ment. Control dishes and plates were placed on a clean bench
for corresponding periods without any irradiation.

Determination of cell number

Growing cells in the 24-well culture plates were collected by
digestion with a 1:1 mixture of trypsin (0.05%) and collage-
nase (0.1%) solutions for up to 25 min to release the cells from
the collagenous matrix. The number of cells in each well was
determined with a Coulter counter.

Quantification of bone nodules

The number of bone nodules present in the 35-mm culture
dishes was quantified, as described previously.!* Primary rat
calvarial cell cultures were maintained for 21 days after sub-
cultivation in vitro, after which the contents of each well were
fixed for 10 min in 4% paraformaldehyde in PBS and stained
using the von Kossa technique. Bone nodules in each dish were
counted at X 15 magnification using a dissecting microscope
(Olympus, Tokyo, Japan) by placing the culture dish on a
transparent acetate grid ruled in 2-mm squares.

To evaluate the bone nodule areas precisely, the 35-mm
dishes were photographed at X100 magnification using a dis-
secting microscope (Olympus, Tokyo, Japan). The outline of
each bone nodule (outside edge of light brown stained area)
was traced from the photographs, and the traces were measured
by a personal computer using image analysis software (Ultim-
age Ver. 2.0, Graftek France, Voisins-Le-Bretonneux, France).
The total bone nodule area was calculated by adding each area
in each dish, and then the mean + standard deviation (SD) was
calculated from five replicate data. The mean area of bone nod-
ules was then determined by dividing the total area by the
number of nodules in each dish, and the mean + SD was calcu-
lated from five replicate data.

Assay of alkaline phosphatase (ALP) activity

Calvarial cells cultured in the 24-well plates were rinsed
three times with PBS. Tris-HCI (10 mM/L, pH 7.4), containing
5 mM/L MgCl,, was then added, and the cells were collected
by a cell scraper and sonicated for 1 min. ALP activity was as-
sayed on days 3-21 by the method described by Lowry et al.22
The amount of p-nitrophenol produced was measured at 410
nm. One unit of enzyme was defined as the activity that Iiber-
ated 1 mmole of product per min at 37°C, and ALP activity was
shown as mU/105 cells.

RNA preparation and RT-PCR analysis

Total RNA was extracted on day 9 from rat osteoblastic
cells cultured in 100 mm dishes by an acid guanidinium
thiocyanate—phenol—chloroform extraction method.?* cDNA
synthesis and amplification by RT-PCR were carried out
using a Gene Amp RNA kit (Perkin-Elmer-Cetus, NJ). PCR
amplification was carried out using the Gene Amp PCR
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FIG. 1. Effects of different modes of laser irradiation on cel-
lular proliferation. Laser irradiation at all conditions (3.84
J/cm?, 10 or 20 min) significantly stimulated cellular prolifera-
tion as compared with the controls (**p < 0.01, *p < 0.05),
while PI-1 and -2 showed grater cellular proliferation on days 9
than CI or PI-8 (fp < 0.05, 11p < 0.01). Values are mean + SD
for four cultures. Similar results were obtained from two differ-
ent experiments.

system 9600 (Perkin-Elmer-Cetus) for 21-33 cycles under
the following conditions: 94°C for 1 min, 55°C for 2 min,
and 72°C for 3 min. The PCR primers for amplification of
ALP?4 and GAPDH?5 were designed based on the published
sequences. The primers were as follows: 5'-GAA AGA GAA
AGA CCC CAG-3' (forward primer for ALP); 5'-ACC
ACC CAT GAT CAC ATC-3' (reverse primer for ALP);
5'-ATC ACC ATC TTC CAG GAG-3' (forward primer
for GAPDH); 5'-ATG GAC TGT GGT CAT GAG-3' (re-
verse primer for GAPDH). PCR fragments were electro-
phoresed on 2.0% agarose gels and subsequently stained with
ethidium bromide.

Statistics

The values were calculated as mean values + SD. Signifi-
cance was determined by Student’s #-test, Tukey’s test, and
two-way analysis of variance (ANOVA).
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RESULTS

Laser irradiation effect on cellular proliferation

The growth curve for fetal rat calvarial cells cultured under
the preceding conditions is shown in Figure 1. Laser irradia-
tion under all modes significantly stimulated cellular prolifera-
tion as compared with the controls. Although the total dose was
the same in all groups (3.84 J/cm?2, 10 or 20 min), the stimula-
tory effects were different in each. CI and PI-8 showed similar
effects, as they had significant cellular proliferation on days 6
(p < 0.05) and 9 (p < 0.01), as compared with the correspond-
ing controls. However, PI-1 and -2 had more effective prolifer-
ation, as cellular proliferation was significantly stimulated on
days 6 (p < 0.05), 9 (p < 0.01), and 12 (p < 0.05) when com-
pared with the corresponding controls, and the number of cells
in both groups were significantly higher (p < 0.01) on day 9
(1.20-fold) when compared with the corresponding CI and PI-8
groups. In contrast, final saturation densities on day 21 were
‘the same in all groups.

Laser irradiation on bone nodule formation

The number of bone nodules present in five replicate 35-mm
dishes was counted, and significant stimulation by laser irradi-
ation occurred under all modes (Fig. 2). The interaction be-
-tween the two independent factors (irradiation dose and mode)
was significant (p < 0.0001) by two-way ANOVA. The maxi-
mal stimulation rates in each group were 1.33-fold in CI (10
min), 1.43-fold in PI-1 (20 min), 1.49-fold in PI-2 (20 min),
and 1.31-fold in PI-8 (20 min) as compared with the controls
(p <0.01).
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FIG. 2. Effect of different modes of laser irradiation on the
number of bone nodules. Laser irradiation at all conditions sig-
nificantly stimulated the number of bone nodulés as compared
with the controls, and the effects increased in a dose-dependent
manner. In the PI-2 group, the lowest dose of irradiation still
had the capacity to stimulate bone nodule formation. Values are
mean + SD for five cultures. Significant difference from non-
irradiation control (*p < 0.01). Significant difference from CI
and PI-8 (T1p < 0.01, tp < 0.05 by Tukey test).



274

When the effects of dose on bone nodule formation were
compared, irradiation in the PI-2 group was considered the
most effective, because the lowest dose (0.48 J/cm?) still had
stimulatory effect. In the PI-1 group, however, the lowest dose
(0.48 J/cm?) did not have any stimulatory effect, while the
higher doses (0.96-3.84 J/cm?) showed stimulatory effects. In
the CI and PI-8 groups, only the highest doses (3.84 J/cm?)
showed stimulatory effects.- When the effects of bone nodule
formation in each group were compared at their maximal dose
of irradiation, the PI-1 and -2 groups had significant bone nod-
ule stimulation, as compared with the CI and PI-8 groups (PI-
1, p < 0.05; PI-2, p < 0.01). When the total bone nodule areas
were compared (Fig. 3A), they were found to be significantly
stimulated in all irradiation groups, as compared with the con-
trols (CI, 1.73-fold; PI-1, 1.94; PI-2, 2.18; PI-8, 1.69; p <
0.01). Furthermore, the total area of bone nodules in PI-2
group was significantly greater, as compared with all other
groups (p < 0.05 by Tukey test). To determine the size of each

>
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FIG. 3. Effect of different modes of laser irradiation on total
area (A) and mean area (B) of bone nodules at the same laser
dose. Laser irradiation at all modes significantly stimulated the
total area (A) and mean area (B) of bone nodules as compared
with the controls, and PI-2 had the significantly greater amount
of total area than other groups. Values are mean + SD for five
cultures. Significant difference from non-irradiation control
(*p < 0.01). Significant difference from CI and PI-8 (1p < 0.05
by Tukey test).
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bone nodule, the mean area of bone nodules was evaluated and
found to be significantly greater in all irradiation groups
(1.29-1.45-fold; p < 0.01), as compared with the controls;
however, there were no significant differences among the irra-
diation groups (Fig. 3B).

Laser irradiation on ALP activity

We next determined ALP activity, the marker of osteoblast
differentiation, in the cultures. ALP activity in the controls, CI,
and all pulsed irradiation groups increased late in the culture,
with peak expression seen at 18 days in the controls, at 12 days
in PI-1 and PI-2, and at 15 days in CI and PI-8 (Fig. 4). Laser
irradiation on day 1 significantly stimulated ALP activity on
days 9, 12, and 15 (p < 0.01) in the PI-1 and PI-2 groups, with a
maximal increase of 1.8-fold occurring on day 12. Significant
activity was also seen on days 12 and 15 (p < 0.05) in the CI
and PI-8 groups, with the maximal increase being 1.2-fold on
day 15, as compared with the controls. Moreover, PI-1 and PI-
2 had significantly increased ALP activity as compared with CI
and PI-8 on day 12 (1.4-fold; p < 0.01), and in PI-2 the effect
remained on day 15, in contrast to CI and PI-8 (1.1-fold; p <
0.05).

Laser irradiation on ALP gene expression

To elucidate the mechanisms for the alteration of ALP activ-
ity by laser irradiation, ALP mRNA levels in both the control
and laser irradiation groups were examined by RT-PCR analy-
sis. As shown in Figure 5A, the visualized PCR products corre-
sponding to GAPDH were the same in the five samples
(control, CI, PI-1, PI-2, PI-8); therefore, it seemed that the
amount of PCR product reflected each mRNA level. The bands
for ALP mRNA from rat calvarial cells were visible after 27,
30, and 33 cycles, though the bands of the laser irradiated cells
were more intense than those from the control. Furthermore,
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FIG. 4. Effect of different modes of laser irradiation on ALP
activity. Laser irradiation at all conditions significantly stimu-
lated ALP activity on days 12 and 15, as compared with the
controls, while PI-1 and -2 had greater increases in ALP activ-
ity than corresponding CI or PI-8. Values are mean + SD for
four cultures. Significant difference from non-irradiation con-
trol (**p < 0.01, *p < 0.05). Significant difference from corre-
sponding CI and PI-8 (t1p < 0.01, tp < 0.05 by Tukey test).
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FIG. 5. Effect of different modes of laser irradiation on ALP
mRNA levels in rat calvarial cells. Ethidium bromide staining
patterns of simultaneously amplified PCR products on agarose—
gel electrophoresis are shown. The gene expressions of ALP on
day 9 was markedly increased by laser irradiation as compared
with the control (A). When ALP gene expressions were com-
pared in each group by densitometric readings, the order was PI-
2, PI-1, CI, PI-8, and control. The expressions were normalized
to equivalent amounts of GAPDH housekeeping mRNA (B).

the bands for ALP mRNA from the PI-1 and PI-2 cells were
significantly more intense than the other laser irradiation
groups.

Relative optical density measurements indicated that ALP
mRNA in the PI-2 cells was highest, as compared with the
other irradiation groups, and the rate of increase in the PI-2
group was approximately 2.6-fold of the value seen in the con-
trol, and 1.5-fold in PI-8, 1.4-fold in CI, and 1.05-fold in PI-1
(Fig. 5B).

DISCUSSION

Various photo-biostimulatory effects of LLLT have been re-
ported, such as cell proliferation,!? differentiation,!® collagen
synthesis,'* and the release of growth factors!>1¢ from cells,
and these effects are affected by many factors, including total
energy dose, irradiation phase, laser spectrum, and power den-
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sity. We previously demonstrated that laser irradiation stimu-
lated bone formation in a mid-palatal suture during rapid max-
illary expansion in rats!” and bone nodule formation in vifro in
a rat calvarial cell culture!® in an irradiation-dependent man-
ner. Moreover, these stimulatory effects were much greater
with laser irradiation at an earlier stage of maxillary expan-
sion!? or of calwvarial cell culture;!3 as compared with irradia-
tion at a later stage. Karu!2 has elucidated an action spectrum
for the biostimulation of DNA synthesis by laser irradiation in
HeLa cells. Hans et al.26 reported that the power density and
exposure time of He-Ne laser irradiation were more important
than total energy dose for stimulation of fibroblast prolifera-
tion and collagen production. However, there are no known
publications concerning the effects of pulse frequency of laser
irradiation on bone formation.

In the present study, using a rat calvarial cell culture system,
we clearly demonstrated that low frequency (1- or 2-Hz)
pulsed laser irradiation (PI-1 and PI-2 groups) significantly

stimulated cellular proliferation (1.2-fold), ALP activity (1.4-

fold), and bone nodule formation (number, 1.1-fold; total area,
1.3-fold only in PI-2), as compared with continuous laser irra-
diation (CI) or higher frequency (8-Hz) pulsed laser irradiation
(PI-8). In the CI and PI-8 groups, the number of bone nodules
was increased with only the highest dose (3.84 J/cm?), while in
the PI-1 group the lower doses (1.92 and 0.96 J/cm?) stimu-
lated the number of bone nodules, and even the lowest dose

'(0.48 J/cm?) was effective in the PI-2 group. These results

showed that the mode of irradiation used in the PI-2 group was
effective for bone nodule formation, even though it had only
one-eighth the energy dose of that in the CI and PI-8 groups.

Sanders et al.?7 reported that irradiation with shorter pulse
durations in CO, laser incisions minimized wound-healing de-
lays more effectively than continuous irradiation. Miyamato et
al.1? also reported that the cytotoxicity ratio of HeLa cells irra-
diated by pulsed laser (10-Hz) was lower than that by continu-
ous wave laser. However, the type of cell death differed
between pulsed (apoptosis) and continuous wave (necrosis) ir-
radiation, as a greater amount of the sensitizer entered the cells
during pulsed irradiation than conti.nu;ous wave irradiation,
causing a different type of DNA damage.

Although these studies may not be directly comparable with
our present study, it is very likely that pulse frequency influ-
ences biological responses. Since laser light is electromagnetic
irradiation that provides a physical stimulus, the biological ef-
fects of irradiation may be comparable with those of electro-
magnetic fields, which are known to modify some relevant
physiological parameters of cell cultures, such as proliferation, .
synthesis, secretion of growth factors, and transcription.?®
These biological responses have also been shown to be influ-
enced by the pulse frequency of the electromagnetic field.
Takahashi et al.? reported that DNA synthesis in Chinese ham-
ster lung fibroblast V79 cells was significantly enhanced when
exposed to an electromagnetic field with 10- and 100-Hz pulse
frequencies. Date et al.3 also reported, using HeL.aS3 cells and
IMR 90 cells, that 100-Hz pulse frequencies increased cellular
proliferation. In osteoblastic cells, Ochi?! reported that a 100-
Hz pulse frequency was the most effective in stimulating the
proliferation of MC3T3-E1 cells, and concluded that an effec-
tive electromagnetic field pulse frequency for cellular prolifer-
ation might be dependent on cell type, as cells seem to have
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their own peculiar sensitivity for certain pulse frequencies.
With regard to our laser irradiation modes, low-frequency
pulsed laser irradiation, especially PI-2, may be the most opti-
mal mode for bone formation.

In the present study, bone nodules found arising in cultures
of osteoblastic cells originated from nodule-forming imma-
ture precursors that proliferated and differentiated to mature
osteoblasts over a period of 3 weeks in vitro.13.20 Therefore,
the significant increase in the number of nodules caused by
LLLT may have been the result of an increased induction of
nodule-forming commitment in the uncommitted precursors.
The conditions associated with PI-1 and especially PI-2 may
have had more capacity to increase greater induction of nod-
ule forming commitment than those with CI or PI-8. Since the
total area of bone nodules may strongly show bone formation
capacity, it was most likely that PI-2 mode of laser irradiation
had 1.3-fold greater capacity of bone formation compared
with CI or PI-8 mode.

ALP activity is considered to be a marker of osteoblast dif-
ferentiation.32 It has been reported that early progenitor cells
do not express ALP activity, but differentiate through a defined
number of cell divisions to ultimately express a mature os-
teoblast phenotype, which is a postmitotic cell expressing this
marker that is capable of bone formation.3? In the present ex-
periment, ALP activity was dramatically stimulated on days 12
and 15, which was significant when compared with CI and PI-
8. Furthermore, an increase in ALP activity could involve tran-
scriptional events of the bone type ALP gene, while dramatic
increases in activity may reflect stimulation of both differentia-
tion and proliferation of cells, resulting in a significant in-
crease in the number of differentiated cells, and finally form
more and larger bone nodules.

The stimulatory mechanisms of LLLT on bone are not fully
understood. It was recently shown that osteoblast-like cells
may simultaneously secrete osteoblastic differentiation factors
in vitro,-37 and that local regulation of bone ce]l functions is
known to be regulated by cytokines, growth factors, and
prostaglandins.®® Since Yu et al.1516 reported that LLLT can
cause the release of growth factors from cultured fibroblasts,
further studies of the effect of LLLT on the production of these
growth factors may be necessary to clarify in detail the stimu-
latory mechanisms of bone formation by laser treatment.

In conclusion, low-frequency pulsed laser irradiation, such
as 1- and 2-Hz, significantly stimulated bone formation in vitro,
as compared with continuous irradiation or higher frequency
pulsed irradiation (8 Hz). It is suggested that the pulse fre-
quency of LLLT must be considered as an important factor for
influencing bone formation.
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